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1 Semi-Markov Process

Definition 1.1 (Semi-Markov Process)
A semi-Markov process is one that changes states in accordance with a Markov chain but

takes a random amount of time between changes. More specifically consider a stochastic

process with states 0,1,..., which is such that, whenever it enters state i, i ≥ 0:

1. The next state it will enter is state j with probability Pij , i, j ≥ 0.

2. Given that the next state to be entered is state j, the time until the transition from i

to j occurs has distribution Fij .

If we let Z(t) denote the state at time t, then {Z(t), t ≥ 0} is called a semi-Markov

process.

Remark A Markov chain is a semi-Markov process in which

Fij(t) =

0 t < 1

1 t ≥ 1

Note that semi-Markov process may not possess Markovin Property.

Definition 1.2 (Embedded Markov Chain)
If we letXn denote thenth state visited, then {Xn, n ≥ 0} is a Markov chain with transition

probabilities Pij . It is called the embedded Markov chain of the semi-Markov process.

Definition 1.3 (Irreducible Semi-Markov process)
The semi-Markov process is irreducible if the embedded Markov chain is irreducible as

well.

Definition 1.4 (Time spends in state i per transition)
Hi denote the distribution of time that the semi-Markov process spends in state i before

making a transition.

Hi(t) =
∑
j

PijFij(t)



2 Continuous-Time Markov Chains

Here we use µi denote its mean

µi =

∫ ∞

0
xdHi(x)

Definition 1.5 (Time between state i)
Tii denote the time between successive transitions into state i and let µii = E [Tii].

Proposition 1.1 (Infinite’s state probability)
If the semi-Markov process is irreducible and if Tii has a nonlattice distribution with finite

mean, then

Pi ≡ lim
t→∞

P{Z(t) = i | Z(0) = j}

exists and is independent of the initial state. Furthermore, Pi =
µi

µii

Corollary 1.1 (Long-run proportion of time in state i)
If the semi-markov process is irreducible and µii < ∞, then with probability 1,

µi

µii
= lim

t→∞

amount of time in i during [0, t]

t

Theorem 1.1 (Long-run probability in state i: Pi)
Suppose the condition of Proposition 1.1 and suppose further that the embedded Markov

chain {Xn, n ≥ 0} is positive recurrent. Then

Pi =
πiµi∑
j πjµj

where πj means the proportion of Xn that equal j, µj is the mean time spent in state j

per transition, and Pi is actually the long-run proportion of time it is in state i.

2 Continuous-Time Markov Chains

Definition 2.1 (Continuous-Time Markov Chains)
Consider a continuous-time stochastic process {X(t), t ≥ 0} taking on values in the set of

non-negative integers. In analogy with the definition of a discrete-time Markov chain, we

say that the process {X(t), t ≥ 0} is a continuous-time Markov chain if for all s, t ≥ 0,

and nonnegative integers i, j, x(u), 0 ≤ u ≤ s,

P{X(t+s) = j | X(s) = i,X(u) = x(u), 0 ≤ u < s} = P{X(t+s) = j | X(s) = i} (Markovian property)

Lemma 2.1 (Independence of time and next state)
The amount of time the process spends in state i and the next state visited is independent.
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2 Continuous-Time Markov Chains

Definition 2.2 (Time stay in i per transition)
τi denote the amount of time that the process stays in state i before making a transition

into a different state.

Lemma 2.2 (Exponential τi)
Random variable τi is memoryless and must be exponentially distributed.

Proof
P{X(u) = i, s < u ≤ t+ s | X(u) = i, 0 ≤ u ≤ s} = P{X(u) = i, s < u ≤ t+ s | X(s) = i}

= P{X(u) = i, 0 < u ≤ t | X(0) = i}
⇓

P {τi > s+ t | τi > s} = P {τi > t}

■

Definition 2.3 (Continuous-Time Markov Chains 2)
Continuous-Time Markov Chain is a stochastic process having the properties that each

time it enters state i:

1. the amount of time it spends in state i before making a transition into a different

state, is exponentially distributed with rate vi, and

2. when the process leaves state i, it will next enter state j with some probability Pij ,

where
∑

j ̸=i Pij = 1 (Pii = 0).

Remark By exponential distribution, a continuous-time Markov chain is a semi-markov process

where the expected time spent in state i is 1/vi.

Definition 2.4 (Regular Chain)
A continuous-time Markov chain with property 0 ≤ vi < ∞ ∀i is said to be regular.

Definition 2.5 (Absorbing state)
If vi = 0, then state i is called absorbing since once entered it is never left.

Definition 2.6 (Transition Rate from i to j: qij)
qij is the rate when in state i that the process makes a transition into state j, we call qij
the transition rate from i to j.

qij = viPij , for all i ̸= j · ( Imply∑
j ̸=i Pij = 1

→
∑
j ̸=i

qij = vi)

Here when the process is in state j it leaves at rate vj , and Pij is the probability that it

then goes to j.
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3 Birth and Death Process

Definition 2.7 (Continuous-Time Markov Chains 3)
Consider independent exponential random variables Xij with rate qij to be associated

with the possible transition from i to j. When the process enters a given state i, the next

transition occurs after min {Xij : j ̸= i} time units. The probability for j to be the next

state is P
{
Xij = min

{
Xi,j′ : j

′ ̸= i
}}

.

min {Xij : j ̸= i} ∼ E(
∑
j ̸=i

qij = vi)

P
{
Xij = min

{
Xi,j′ : j

′ ̸= i
}}

= qij/
∑
j′ ̸=i

qi,j′ = Pijvi/vi = Pij

Definition 2.8 (Probability from i to j after t: Pij(t))
Pij(t) is the probability that a Markov chain, presently in state i, will be in state j after

an additional time t.

Pij(t) = P{X(t+ s) = j | X(s) = i}

3 Birth and Death Process

Definition 3.1 (Birth and Death process)
A continuous-time Markov chain with states 0, 1, ... for which qij = 04 whenever j /∈
{i− 1, i+1} is called a birth and death process. The values {λi, i ≥ 0} and {µi, i ≥ 1}
are called respectively the birth rates and the death rates.

λi = qi,i+1, µi = qi,i−1

∑
j

qij = vi

−−−−−−−→

vi = λi + µi, Pi,i+1 =
λi

λi + µi
= 1− Pi,i−1

Say thatXi ∼ E (λi) denotes the time until the next birth whenever there are i person, and

Yi ∼ E(µi) denotes the time until the next death, then τi = min {Xi, Yi} ∼ E(λi +µi =

vi) is the time until the next transition.

the event {τi = Xi} (resp., {τi = Yi}) ⇐⇒ the next transition is a birth (resp., a death)

P {τi = Xi} =
λi

λi + µi
= Pi,i+1 and P {τi = Yi} =

µi

λi + µi
= Pi,i−1

Lemma 3.1 (Forward Equations for Birth and Death Process)

P ′
i0(t) =

∑
k ̸=0

qk0Pik(t)− v0Pi0(t) = µ1Pi1(t)− λ0Pi0(t)

P ′
ij(t) =

∑
k ̸=j

qkjPik(t)− vjPij(t) = λj−1Pi,j−1(t) + µj+1Pi,j+1(t)− (λj + µj)Pij(t), j ̸= 0
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3 Birth and Death Process

Lemma 3.2 (Pi for Birth and Death Process)

State Rate Process Leaves Rate Process Enters

0 λ0P0 = µ1P1

n, n > 0 (λn + µn)Pn = µn+1Pn+1 + λn−1Pn−1

⇓

λ0P0 = µ1P1

λ1P1 = µ2P2 + (λ0P0 − µ1P1) = µ2P2

λ2P2 = µ3P3 + (λ1P1 − µ2P2) = µ3P3

λnPn = µn+1Pn+1 + (λn−1Pn−1 − µnPn) = µn+1Pn+1

⇓

P1 =
λ0

µ1
P0

P2 =
λ1

µ2
P1 =

λ1λ0

µ2µ1
P0

P3 =
λ2

µ3
P2 =

λ2λ1λ0

µ3µ2µ1
P0

Pn =
λn−1

µn
Pn−1 =

λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1
P0

⇓ 1 = P0 + P0

∞∑
n=1

λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1

P0 =

[
1 +

∞∑
n=1

λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1

]−1

Pn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

(
1 +

∑∞
n′=1

λn′−1λn′−2···λ1λ0

µn′µn′−1···µ2µ1

) , n ≥ 1

The condition for the limiting distribution to exist is
∑∞

n=1
λn−1λn−2···λ1λ0

µnµn−1···µ2µ1
< ∞.

Definition 3.2 (Pure Birth process)
A birth and death process is said to be a pure birth process if µn = 0 for all n.

Remark For example, poisson process is a pure birth process with constant birth rate λn = λ.

Lemma 3.3 (Property for Pure Birth process)
The forward equations are

P ′
ii(t) = −λiPii(t)

P ′
ij(t) = λj−1Pi,j−1(t)− λjPij(t), j > i.

By Pii(0) = 1 and solving the first equation, we have Pii(t) = e−λit, and it means the

probability that the time until a transition from state i is greater than t.

By Pij(0) = 0 and solving the second equation, we have Pij(t) =
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4 Kolmogorov Differential Equations

e−λjt
∫ t
0 e

λjsλj−1Pi,j−1(s)ds, j > i.

eλjtλj−1Pi,j−1(t) = eλjt
[
P ′
ij(t) + λjPij(t)

]
=

d

dt

[
eλjtPij(t)

]
Follow this track, we can derive Pij(t) = e−λt(λt)j−i

(j−i)! for Poisson process by induction

method.

Proposition 3.1
An ergodic birth and death process is in steady state time reversible.

Definition 3.3 (Birth and Death Process with new members)

Lemma 3.4 (E[X(t) | X(0) = i])

4 Kolmogorov Differential Equations

Lemma 4.1 (Limiting Pij(t))

1. Pii(t) = 1− vit+ o(t), i.e., limt→0
1−Pii(t)

t = vi.

2. Pij(t) = qijt+ o(t), i.e, limt→0
Pij(t)

t = qij , i ̸= j.

Lemma 4.2 (Chapman-Kolmogorov Equations)

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s) ∀s, t

Theorem 4.1 (Kolmogorov’s Backward Equations)

P ′
ij(t) =

∑
k ̸=i

qikPkj(t)− viPij(t) =
∑
k ̸=i

qik (Pkj(t)− Pij(t)) ∀i, j, t ≥ 0

Proof Pij(t+ h)− Pij(t) =
∑

k Pik(h)Pkj(t)− Pij(t) =
∑

k ̸=i Pik(h)Pkj(t)− [1− Pii(h)]Pij(t)

limh→0
Pij(t+h)−Pij(t)

h = limh→0

{∑
k ̸=i

Pik(h)
h Pkj(t)− 1−Pii(h)

h Pij(t)
}

■

Remark Here qik is the rate moving from i to k in an incremental interval. Pkj(t) − Pij(t)

means the probability the system changes to state j over length of time t if i → k happens, i.e.,

qik. And P ′
ij(t) means the incremental change in Pij(t).

Theorem 4.2 (Kolmogorov’s Forward Equations)

P ′
ij(t) =

∑
k ̸=i

qkjPik(t)− vjPij(t) Suitable regularity conditions
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4 Kolmogorov Differential Equations

Remark The incremental change in Pij(t) is equal to the difference in two terms. One is the sum

over k of the probability of being in state k at time t and then moving to j in the final incremental

interval, the other is the probability of bing in state j at time t and then moving away in the final

incremental interval.

Proof Pij(t+ h)− Pij(t) =
∑

k Pik(t)Pkj(h)− Pij(t) =
∑

k ̸=j Pik(t)Pkj(h)− [1− Pjj(h)]Pij(t)

limh→0
Pij(t+h)−Pij(t)

h = limh→0

{∑
k ̸=j Pik(t)

Pkj(h)
h − 1−Pjj(h)

h Pij(t)
}

■

Theorem 4.3 (Balance Equation)

vjPj =
∑
i

Piqij and
∑
j

Pj = 1

Here vjPj means the rate at which the process leaves state j,
∑

i Piqij means the rate at

which the process enters state j.

Remark It means in any interval (0, t), the number of transitions into state j must be equal to

the number of transitions out of state j.

(# transitions into j in (0, t])−(# transitions out of j in (0, t]) =



1 X(0) ̸= j,X(t) = j

−1 X(0) = j,X(t) ̸= j

0 X(0) = j,X(t) = j

0 X(0) ̸= j,X(t) ̸= j
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5 Reversed Chain and Time reversibility

Proof

πj =
∑
i

πiPij and
∑
i

πi = 1

⇓ Pj =
πj/vj
C

(Pj =
πj/vj∑
i πi/vi

)
∑
j

Pj = 1

vjPj =
∑
i

viPiPij and
∑
j

Pj = 1

⇓ qij = viPij

vjPj =
∑
i

Piqij and
∑
j

Pj = 1

⇑

0 =
∑
k ̸=j

qkjPk − vjPj

⇑ Pij(t) is bounded (0 ≤ Pij(t) ≤ 1), P ′
ij(t) converges to 0

lim
t→∞

P ′
ij(t) = lim

t→∞

∑
k ̸=j

qkjPik(t)− vjPij(t)

 =
∑
k ̸=j

qkjPk − vjPj

⇑

P ′
ij(t) =

∑
k ̸=j

qkjPik(t)− vjPij(t) Forward Equations

■

5 Reversed Chain and Time reversibility

Definition 5.1 (Ergodic chain)
1. When a continuous-time Markov chain is irreducible and the limiting probabilities

Pj > 0 for all j, we say that the chain is ergodic.

2. When the embedded discrete-time Markov chain is irreducible and positive recur-

rent, we say that the chain is ergodic.

Definition 5.2 (Steady state)
Steady state means an ergodic continuous-time Markov chain has been in operation an

infinitely long time, that is,

P{X(t) = j} = Pj

Definition 5.3 (Reversed chain)
Consider a continuous-time Markov chain in steady state going backwards in time, the

reverse process is also a continuous-time Markov chain.

P{X(t− s) = j | X(t) = i,X(y), y > t} = P{X(t− s) = j | X(t) = i}
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5 Reversed Chain and Time reversibility

Lemma 5.1 (Reversed chain’s property)
1. The embedded discrete-time Markov chain transition probabilities P ∗

ij is given by

P ∗
ij =

πjPji

πi
.

2. The amount of time spent in a state is the same regardless of forward or backward,

that is, vi is the same (the time spent in i follows Exp(vi)).

3. Transition Rate: q∗ij = viP
∗
ij =

vjPjPji

Pi
=

Pjqji
Pi

, that is, Piq
∗
ij = Pjqji. Here Piq

∗
ij

is the rate at which the reverse chain makes a transition from i to j, Pjqji is the rate

at which the forward chain makes a transition from j to i.

Proof (3) holds because Pk = πk/vk
C , where C =

∑
i πi/vi, then πj

πi
=

vjPj

viPi
. ■

Definition 5.4 (Time reversible)
The stationary continuous-time Markov chain is said to be time reversible if the reverse

process follows the same probabilistic law as the original process. That is, it is time

reversible if for all i and j

q∗ij = qij

which is equivalent to

Piqij = Pjqji ∀i, j

That is, the condition of time reversibility is that the rate at which the process goes directly

from state i to state j is equal to the rate at which it goes directly from j to i.

Lemma 5.2
Let qij denote the transition rates of an irreducible continuous-time Markov chain. If

we can find a collection of numbers q∗ij , i, j ≥ 0, i ̸= j, and a collection of nonnegative

numbers Pi, i ≥ 0, summing to unity, such that

Piqij = Pjq
∗
ji, i ̸= j and

∑
j ̸=i

qij =
∑
j ̸=i

q∗ij , i ≥ 0

then q∗ij are the transition rates for the reversed chain and Pi are the limiting probabilities

(for both chains).

Lemma 5.3 (Trancated Chain)
A time-reversible chain with limiting probabilities Pj , j ∈ S, that is truncated to the set

A ⊂ S and remains irreducible is also time reversible and has limiting probabilities

PA
j =

Pj∑
k∈A Pk

, j ∈ A
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